HOMOLOGY AND COHOMOLOGY OF II-ALGEBRAS

W. G. DWYER AND D. M. KAN

ABSTRACT. We study a type of homological algebra associated to the collection of *all* homotopy groups of a space (just as the theory of group homology is associated to the fundamental group).

1. Introduction

- 1.1. Summary. In [3] we started an investigation of Π -algebras (i.e., (≥ 1) -graded groups, together with an action of the primary homotopy operations) by constructing an *enveloping ring* of a Π -algebra, which generalized the integral group ring of a group as well as the enveloping algebra of a connected graded rational Lie algebra. In the present paper we
 - (i) use the enveloping ring construction to define the homology and cohomology of Π -algebras in a manner which generalizes the usual homology and cohomology of groups and connected graded rational Lie algebras,
 - (ii) obtain Serre spectral sequences which, for a short exact sequence $* \rightarrow U \rightarrow W \rightarrow V \rightarrow *$ of Π -algebras, relate the homology and cohomology groups of U and V to those of W, and
 - (iii) discuss a slightly different, Quillen-like approach to the homology and cohomology of Π -algebras and note that (except in the bottom dimension) the resulting groups differ from the earlier ones (see (i)) by only a shift in dimension.
- 1.2. A more detailed outline of the paper. (i) Homology of Π -algebras. After fixing some notation and terminology (in §1.3) and a brief review of Π -algebras (in §2) and the enveloping ring functor E (in §3), we recall (in §4) some results of Quillen on simplicial modules over a simplicial ring R (with a slight change in notation: we write $\operatorname{Tor}_i^R(-,-)$ for Quillen's functors $\pi_i(-\otimes_R^L-)$). In §5 we then define the homology groups $H_i(X;M)$ of a Π -algebra X with coefficients in a right EX-module M, by

$$H_i(X; M) = \operatorname{Tor}^{EF_{\bullet}X}(M, Z), \quad i \geq 0$$

(where F.X denotes the standard free simplicial resolution (2.5) of X), and we obtain, for a short exact sequence $*\to U\to W\to V\to *$ of Π -algebras and a right EW-module M, a Serre spectral sequence with

$$E_{p,q}^2 = H_p(V; H_q(U; M)) \Rightarrow H_{p+q}(W; M).$$

Received by the editors August 9, 1991 and, in revised form, January 24, 1992.

1991 Mathematics Subject Classification. Primary 55Q05; Secondary 18G15.

Research partly supported by the National Science Foundation.

(ii) Cohomology of Π -algebras. This requires "dualizing" the results of §§4 and 5. To do this we construct (in §6) functors $\operatorname{Ext}_R^i(-,-)$, which involve in the second variable rather curious "cosimplicial modules over the simplicial ring R". In §7 we then define the cohomology groups $H^i(X; N)$ of a Π -algebra X with coefficients in a left EX-module N, by

$$H^i(X, N) = \operatorname{Ext}_{FF, X}^i(Z, N), \qquad i \geq 0,$$

and we obtain, for a short exact sequence $* \to U \to W \to V \to *$ of Π -algebras and a left EW-module N, a Serre spectral sequence with

$$E_2^{p,q} = H^p(V; H^q(U; N)) \Rightarrow H^{p+q}(W; N).$$

(iii) Quillen homology and cohomology. The last two sections (§§8 and 9) are devoted to a Quillen-like approach to the homology and cohomology of a Π -algebra X. The key notion here is that of a strongly abelian group object over X, i.e., a diagram of Π -algebras

$$* \to B \xrightarrow{i} Y' \stackrel{p}{\underset{i}{\longleftrightarrow}} X \to *$$

in which $pj=\mathrm{id}$, the right-pointing arrows form an exact sequence and B is strongly abelian (i.e., (2.2) just a (≥ 1) -graded abelian group). We show that these objects are in a natural 1-1 correspondence with the (≥ 0) -graded left EX-modules and that, for an object $(Y \to X)$ over X, the EX-module so corresponding to the strong abelianization of $(Y \to X)$ is the module $EX \otimes_{EY} IY$ (where $IY \subset EY$ denotes the augmentation ideal). As a result the Quillen homology groups $H_i^Q(X; M)$ and cohomology groups $H_Q^i(X; N)$ can be described by

$$H_i^Q(X; M) = \operatorname{Tor}_i^{EF \cdot X}(M, IF \cdot X),$$

 $H_O^i(X; N) = \operatorname{Ext}_{EF, X}^i(IF \cdot X, N), \qquad i \ge 0,$

and the short exact sequence $0 \to IF.X \to EF.X \to Z \to 0$ therefore readily yields natural isomorphisms

$$H_i^Q(X; M) \approx H_{i+1}(X; M), \quad H_O^i(X; N) \approx H^{i+1}(X; N), \qquad i \ge 1,$$

and natural exact sequences

$$0 \to H_1(X; M) \to H_0^Q(X; M) \to M \to H_0(X; M) \to 0,$$

$$0 \to H^0(X; N) \to N \to H_0^Q(X; N) \to H^1(X; N) \to 0.$$

- 1.3. Notation, terminology, etc. We will freely use notation, terminology and results of [3] and [7, Chapter II]. In particular:
- (i) Rings and modules. All rings will have an identity and will be associative (but not necessarily commutative) and augmented over Z (the integers). Moreover, they will be (≥ 0) -graded, except that, for a simplicial ring R, its homotopy ring π_*R will be bi- (≥ 0) -graded. All modules over bigraded rings will be bi-graded, and all other modules will be graded. This also applies to Z-modules, i.e., abelian groups.
- (ii) Whitehead products. For a pointed connected CW complex L and elements $a \in \pi_{p+1}L$ and $b \in \pi_{q-1}L$ $(p, q \ge 1)$, we denote by [a, b] the

Whitehead product which differs by $(-1)^p$ from the usual one [10, Chapter X]. As a result

$$[a, b] + (-1)^{pq}[b \cdot a] = 0$$

and if $c \in \pi_{r+1}L$ $(r \ge 1)$, then the Jacobi identity becomes

$$(-1)^{pr}[a, [b, c]] + (-1)^{pq}[b, [c, a]] + (-1)^{qr}[c, [a, b]] = 0.$$

The authors would like to thank the referee for helpful comments.

2. Π-ALGEBRAS

We start with recalling from [3] some facts about

- 2.1. **H-algebras.** A **H-algebra** consists [3, 2.3] of a (≥ 1) -graded group $\{X_p\}_{p=1}^{\infty}$, with X_p abelian for p > 1, together with three kinds of operations:
 - (i) a Whitehead product homomorphism $[-, -]: X_p \otimes X_q \to X_{p+q-1}$ for all p, q > 1, and
 - (ii) a composition function $(-\circ \alpha)\colon X_p \to X_r$, for every element $\alpha \in \pi_r S^p$ with r > p > 1 (which need not be a homomorphism, but which is right additive, i.e., $(x \circ \alpha_1) + (x \circ \alpha_2) = (x \circ (\alpha_1 + \alpha_2))$ for all $x \in X_p$ and $\alpha_1, \alpha_2 \in \pi_r S^p$),

which satisfy all the relations that hold for the Whitehead product (1.3) and composition operations on the higher homotopy groups of pointed connected CW complexes, and

(iii) a *left action* of X_1 on the X_p (p > 1) which commutes with the Whitehead product and composition operations (we will write $\tau_x y$ for the result of this left action by an element $x \in X_1$ on an element $y \in X_p$ (p > 1).

Thus a Π -algebra X is completely determined by its universal covering \widetilde{X} (i.e., the sub- Π -algebra $\widetilde{X} \subset X$ consisting of the elements of degree > 1) and the left action of the group X_1 on this Π -algebra \widetilde{X} .

The category of Π -algebras will be denoted by Π -al.

- 2.2. **Examples.** (i) The homotopy Π -algebra of a pointed connected CW complex. Let L be a pointed connected CW complex. Then the graded group $\{\pi_p L\}_{p=1}^{\infty}$, together with the usual Whitehead product (1.3) and composition operations and fundamental group action, is clearly a Π -algebra, which will be denoted by $\pi_* L$.
- (ii) Aspherical Π -algebras. These are Π -algebras X such that (2.1) \widetilde{X} is trivial. Clearly such an aspherical Π -algebra X is completely determined by the group X_1 . Aspherical Π -algebras thus are just groups.
- (iii) Simply connected rational Π -algebras. These are Π -algebras X such that $X_1 = 1$ and each X_p (p > 1) is a rational vector space. Such Π -algebras are [3, 2.5] essentially connected graded rational Lie algebras; they are completely determined by their "underlying" connected graded rational Lie algebra, i.e., the Lie algebra obtained by lowering the degrees by 1 and taking the Whitehead product as Lie product.
- (iv) Strongly abelian Π -algebras. These are Π -algebras X in which all Whitehead product and composition operations are trivial and in which X_1 is abelian and acts trivially on the X_p (p > 1). Strongly abelian Π -algebras thus are just (≥ 1) -graded abelian groups.

2.3. Free Π -algebras. Another important class of Π -algebras is that of the free Π -algebras, i.e., Π -algebras which are isomorphic to homotopy Π -algebras of wedges of spheres. If $M = \bigvee_{j \in J} S^{P_j}$ $(p_j \ge 1)$, then $\pi_* M$ is the free Π -algebra on the obvious generators $i_{p_j} \in \pi_{p_j} S^{p_j} \subset \pi_{p_j} M$ $(j \in J)$. Moreover the universal covering of $\pi_* M$ is the homotopy Π -algebra of the universal covering of M, i.e., the free Π -algebra on the elements $\tau_x i_{p_j}$ with $x \in \pi_1 M$, $y \in J$, and $y_j > 1$, an

Clearly a sub- Π -algebra of a free Π -algebra need not be free. However, if U and V are both free Π -algebras, then the kernel of the projection $U \coprod V \to V$ is also free. To prove this one first notes: If $U_1 = V_1 = 1$ and $\{a_i\}_{i \in I}$ and $\{b_j\}_{j \in J}$ are sets of free generators for U and V respectively, then [3, 2.5(v); 6, Theorem 3] the kernel of the projection map $U \coprod V \to V$ is freely generated by the elements $[\cdots [a_i, b_{j_1}], \ldots, b_{j_n}]$ with $i \in I$, $n \geq 0$, and $j_1, \ldots, j_n \in J$.

- 2.4. Simplicial Π -algebras. The category $s\Pi$ -al of simplicial Π -algebras admits [7, II, §4] a closed simplicial model category structure in which the simplicial structure is the obvious one and in which a map is a fibration or a weak equivalence whenever the underlying map of simplicial sets is so. The cofibrant objects are the retracts of the free ones, where a simplicial Π -algebra Y is called *free* if there exists a subset $B \subset Y$, closed under the degeneracy operators, such that, for each $i \geq 0$, the Π -algebra of Y in dimension i is freely generated by the elements of B in dimension i. Moreover all simplicial Π -algebras are fibrant and hence [7, II, §2] every weak equivalence $f: Y \to Y' \in s\Pi$ -al between cofibrant objects is actually a homotopy equivalence; i.e., there exists a map $f': Y' \to Y \in s\Pi$ -al such that the compositions f'f and ff' are simplicially homotopic to the identity maps of Y and Y' respectively.
- 2.5. The standard resolution of a Π -algebra. The standard resolution of a Π -algebra X consists of the free Π -algebra F.X and weak equivalence $F.X \to X \in \mathbf{s}\Pi$ -al, in which each $(F.X)_n$ $(n \ge 0)$ consists of the Π -algebra $F^{n+1}X$ obtained by (n+1)-fold application of the free Π -algebra functor F (i.e., the forgetful functor from Π -al to (≥ 1) -graded pointed sets) followed by its left adjoint) and in which the face and degeneracy operators and the map $F.X \to X$ are the obvious ones. Clearly this construction is functorial.

3. The enveloping ring of a Π -algebra

Next we briefly discuss the notion of

3.1. The enveloping of a Π -algebra. The enveloping ring of a Π -algebra X is [3, 4.1] the ring (1.3) EX which has, for every integer $p \ge 1$ and element $x \in X_p$, a generator ex in degree p-1, and which has the following relations:

$$\begin{split} e(x+y) &= ex + ey \,, & x, y \in \widetilde{X} \,, \\ e[x,y] &= (ex)(ey) - (-1)^{pq}(ey)(ex) \,, & x \in \widetilde{X}_{p+1} \,, y \in \widetilde{X}_{q+1} \,, \\ e(xy) &= (ex)(ey) \,, & x, y \in X_1 \,, \\ e(\tau_x y) &= (ex)(ey)(ex^{-1}) \,, & x \in X_1 \,, y \in \widetilde{X} \,, \\ e(x \circ \alpha) &= H(\alpha)(ex)^2 \,, & \alpha \in \pi_{2p-1} S^p \,, p \text{ even} \,, \\ &= 0 \,, & \text{otherwise} \,, \end{split}$$

where $H(\alpha)$ denotes the Hopf invariant [3, 1.3(iv)] of α .

This definition immediately implies

- 3.2. **Proposition.** Let $X \in \Pi$ -al. Then EX is the "semitensor product" of $E\widetilde{X}$ and ZX_1 (the integral group ring of X_1), in the sense that
 - (i) additively EX is actually isomorphic to $E\widetilde{X} \otimes ZX_1$,
 - (ii) the multiplication in EX is given by

$$(ey \otimes ex)(ey' \otimes ex') = (ey)(e\tau_x y') \otimes (ex)(ex')$$

for all $x, x' \in X_1$ and $y, y' \in \widetilde{X}$.

- 3.3. Classical examples. (i) If $X \in \Pi$ -al is aspherical (2.2), then $EX = ZX_1$, the integral group ring of X_1 , and the function $X_1 \to EX = ZX_1$ given by $X \to eX$ for all $X \in X_1$, is the usual map which sends the elements of X_1 to the corresponding (additive) generators of ZX_1 .
- (ii) If $X \in \Pi$ -al is simply connected rational (2.2), then EX is the enveloping algebra of the underlying Lie algebra of X (2.2), and the function $X \to EX$ given by $X \to eX$ for all $X \in X$, is the usual inclusion of one in the other.

Another easy consequence of Definition 3.1 is

- 3.4. **Proposition.** Let X be a simply connected (i.e., $X_1 = 1$) free Π -algebra (2.3) and let $\{b_j\}_{j \in J}$ be a set of free generators for X. Then EX is the free (tensor) algebra on the elements eb_j $(j \in J)$. In particular, EX is additively just the free abelian group on the elements $(eb_{j_1})\cdots(eb_{j_n})$ with $n \geq 0$ and $j_1, \ldots, j_n \in J$.
- 3.5. Corollary (2.3 and 3.2). Let X be a free Π -algebra and let $\{b_j\}_{j\in J}$ be a set of free generators for X. Then EX is additively the free abelian group on the elements $(e\tau_{x_1}b_{j_1})\cdots(e\tau_{x_n}b_{j_n})(ex)$ with $n\geq 0$, $x,x_1,\ldots,x_n\in X_1$, $j_1,\ldots,j_n\in J$, and $b_{j_1},\ldots,b_{j_n}\in\widetilde{X}$.

A straightforward calculation now yields

3.6. **Proposition.** Let X and $\{b_j\}_{j\in J}$ be as in 3.5. Then the augmentation ideal $IX \subset EX$ is a free left EX-module on the elements eb_j with $b_j \in \widetilde{X}$ and the elements $1 - eb_j$ with $b_j \in X_1$.

We will also need

3.7. **Proposition.** Let U and V be free Π -algebras with generators $\{a_i\}_{i\in I}$ and $\{b_j\}_{j\in J}$ respectively and let X be the kernel of the projection $U\coprod V\to V$. Then $E(U\coprod V)$ is a free right EX-module on the elements

$$(e\tau_{v_1}b_{j_1})\cdots(e\tau_{v_n}b_{j_n})(ev)$$

with $n \geq 0$, $v, v_1, \ldots, v_n \in V_1$, $j_1, \ldots, j_n \in J$, and $b_{j_1}, \ldots, b_{j_n} \in \widetilde{V}$.

Proof. If U and V are simply connected (i.e., $U_1 = V_1 = 1$), then one proves this by a lengthy but essentially straightforward calculation using 2.3. The general case now follows readily using 3.2 and 3.5.

We end with considering

- 3.8. **E-flat II-algebras.** A **II-algebra** X is [3, 5.2] called E-flat if (2.5) $\pi_i E F \cdot X$ = 0 for i > 0. Some examples of E-flat **II-algebras** are, in view of [3, 5.4(i) and (ii)] and a slight variation on [3, 5.4(iii)]
 - (i) aspherical (2.2) Π-algebras,
 - (ii) simply connected rational (2.2) Π-algebras, and
 - (iii) free (2.3) Π -algebras.

4. The functors Tor_i^R for a simplicial ring R

In preparation for the definition (in §5) of the homology of a Π -algebra, we recall from [7, II, §6] some facts on simplicial modules over a simplicial ring R. In a slight change in notation we will write Tor_i^R for the functors which were denoted there by $\pi_i(-\otimes_R^R -)$.

4.1. Simplicial modules over a simplicial ring. Given a simplicial ring R (1.3), a left simplicial R-module consists of a simplicial abelian group B, together with a map of simplicial abelian groups $R \otimes B \to B$ which turns each B_i $(i \geq 0)$ into a left R-module. The resulting category of left simplicial R-modules will be denoted by \mathbf{M}_R .

Of course, right simplicial R-modules are just left simplicial R^{op} -modules (where R^{op} denotes the simplicial ring which in each dimension $i \geq 0$ consists of the opposite of the ring R_i) and the category of right simplicial R-modules is therefore denoted by $\mathbf{M}_{R^{\text{op}}}$.

- 4.2. A model category structure for M_R . The category M_R admits [7, II, §6] a closed simplicial model category structure in which the simplicial structure is the obvious one and in which a map is a fibration or a weak equivalence whenever the underlying map of simplicial sets is so. The cofibrant objects are the retracts of the free ones, where an object $B \in M_R$ is called *free* if there exists a subset $X \subset B$, closed under the degeneracy operators, such that each B_i ($i \ge 0$) is the free left R_i -module on $X \cap B_i$. Moreover, all objects of M_R are fibrant and it follows [7, II, §2] that every weak equivalence $f: B \to B' \in M_R$ between cofibrant objects is actually a homotopy equivalence, i.e., there exists a map $f': B' \to B \in M_R$ such that the compositions f'f and ff' are simplicially homotopic to the identity maps of B and B' respectively.
- 4.3. Cofibrant resolutions. Given $B \in \mathbf{M}_R$, a cofibrant resolution of B (over R) consists of a cofibrant object $B_\# \in \mathbf{M}_R$, together with a trivial fibration $j \colon B_\# \to B \in \mathbf{M}_R$ (i.e., a weak equivalence which is onto). Clearly (4.2) such cofibrant resolutions always exist. A convenient and functorial one is the standard resolution $R_\#B \to B \in \mathbf{M}_R$ in which, for each $i \ge 0$, $(R_\#B)_i = (R^{i+1}B)_i$, where $R^{i+1}B$ is obtained from B by (i+1)-fold application of the free left simplicial R-module functor R (i.e., the forgetful functor from \mathbf{M}_R to (pointed simplicial sets), followed by its left adjoint) and in which the face and degeneracy maps and the map $R_\#B \to B \in \mathbf{M}_R$ are the obvious ones.
- 4.4. The functor \otimes_R for a simplicial ring R. Given (4.1) simplicial modules $A \in \mathbf{M}_{R^{op}}$ and $B \in \mathbf{M}_R$, the simplicial abelian group $A \otimes_R B$ (given by $(A \otimes_R B)_i = A_i \otimes_{R_i} B_i$ for all $i \geq 0$) has homotopy meaning whenever B is cofibrant, as a diagonal argument using [4] readily yields

4.5. Proposition. Let $A \in \mathbf{M}_{R^{op}}$ and let $f: B \to B' \in \mathbf{M}_R$ be a weak equivalence between cofibrant objects. Then the map $A \otimes_R B \to A \otimes_R B'$ induces isomorphisms $\pi_i(A \otimes_R B) \approx \pi_i(A \otimes_R B')$ $(i \geq 0)$.

Remark. It is also useful to observe that if $f: A \to A' \in \mathbf{M}_{R^{op}}$ is a weak equivalence and $B \in \mathbf{M}_R$ is a cofibrant object, then the map $f \otimes_R B: A \otimes_R B \to A' \otimes_R B$ induces isomorphisms $\pi_i(A \otimes_R B) \to \pi_i(A' \otimes_R B)$ $(i \geq 0)$. This follows from the analogue of 4.5 if A and A' are in the evident sense cofibrant objects of $\mathbf{M}_{R^{op}}$, from the Corollary on page 6.10 of [7, II] if $f: A \to A'$ is a cofibrant resolution of A', and then in general by the technique of comparing f to the induced map of standard (functorial) cofibrant resolutions.

4.6. The functors Tor_i^R for a simplicial ring R. These functors will be somewhat different from the ones denoted by Tor_i^R in [7, II, §6]. Let $A \in \mathbf{M}_{R^{op}}$ and $B \in \mathbf{M}_R$ and let $j: B_\# \to B$ be a cofibrant resolution (4.3) of B. Then the abelian groups $\pi_i(A \otimes_R B_\#)$ do not depend on the choice of this cofibrant resolution and will be denoted by $\operatorname{Tor}_i^R(A, B)$ (instead of by $\pi_i(A \otimes_R^L B)$ as in [7, II, §6]).

Similarly, for maps $a: A \to A' \in \mathbf{M}_{R^{op}}$ and $b: B \to B' \in \mathbf{M}_R$, cofibrant resolutions $j: B_\# \to B$ and $j': B_\#' \to B'$ and a map $b_\#: B_\# \to B_\#' \in \mathbf{M}_R$ such that $j'b_\# = bj$ (which always exists), the resulting maps

$$\pi_i(a \otimes_R b_\#)$$
: $\pi_i(A \otimes_R B_\#) = \operatorname{Tor}_i^R(A, B) \to \pi_i(A' \otimes_R B_\#') = \operatorname{Tor}_i^R(A', B')$

(i > 0) do not depend on the choices of j, j' and $b_{\#}$ and will be denoted by $\operatorname{Tor}_{i}^{R}(a, b)$.

The functor Tor_i^R so defined are clearly functors from $\mathbf{M}_{R^{op}} \times \mathbf{M}$ to (abelian groups) and one readily verifies

4.7. **Proposition.** Let $* \to A' \to A \to A'' \to *$ and $* \to B' \to B \to B'' \to *$ be short exact sequences in $\mathbf{M}_{R^{op}}$ and \mathbf{M}_{R} respectively. Then there are natural long exact sequences

$$\cdots \to \operatorname{Tor}_{i}^{R}(A', B) \to \operatorname{Tor}_{i}^{R}(A, B) \to \operatorname{Tor}_{i}^{R}(A'', B)$$

$$\to \operatorname{Tor}_{i-1}^{R}(A', B) \to \cdots \to \operatorname{Tor}_{0}^{R}(A'', B),$$

$$\cdots \to \operatorname{Tor}_{i}^{R}(A, B') \to \operatorname{Tor}_{i}^{R}(A, B) \to \operatorname{Tor}_{i}^{R}(A, B'')$$

$$\to \operatorname{Tor}_{i-1}^{R}(A, B') \to \cdots \to \operatorname{Tor}_{0}^{R}(A, B'').$$

To get a further hold on the groups $\operatorname{Tor}_i^R(A,B)$, one notes [7, II, §6] that the multiplication on R turns the (≥ 0) -graded abelian group π_*R into a ring, that the R-module structures on A and B turn the (≥ 0) -graded abelian groups π_*A and π_*B into right and left π_*R -modules respectively and that the resulting groups $\operatorname{Tor}_i^{\pi_*R}(\pi_*A,\pi_*B)$ are related to the groups $\operatorname{Tor}_i^R(A,B)$ by [7, II, §6].

4.8. A Künneth spectral sequence. There is a natural first quadrant spectral sequence with

$$E_{p,q}^2 = (\operatorname{Tor}_p^{\pi_*R}(\pi_*A, \pi_*B))_q \Rightarrow \operatorname{Tor}_{p+q}^R(A, B).$$

One also has [7, II, §6]

4.9. A partial Künneth spectral sequence. There is a natural first quadrant spectral sequence with

$$E_{p,q}^2 = \operatorname{Tor}_p^R(\pi_q A, B) \Rightarrow \operatorname{Tor}_{p+q}^R(A, B)$$

where R acts on each $\pi_a A$ $(q \ge 0)$ through the projection $R \to \pi_0 R$.

5. Homology of Π -algebras

In this section we

- (i) define, for a Π -algebra X and a right module M over the enveloping ring EX of X, homology groups $H_i(X; M)$ of X with coefficients in M, in such a manner that, for aspherical Π -algebras (i.e., groups) and for simply connected rational Π -algebras (which are essentially connected rational Lie algebras), this definition of homology coincides with the usual one, and
- (ii) note that a short exact sequence of coefficient modules, as usual, gives rise to a *long exact sequence* of homology groups, while a short exact sequence $* \to U \to W \to V \to *$ of Π -algebras yields a *Serre spectral sequence* relating the homology groups of U and V to those of W.

We thus start with defining the

5.1. Homology of Π -algebras. Let X be a Π -algebra (2.1), let EX be its enveloping ring (3.1) and let M be a right EX-module. Then the homology groups $H_i(X; M)$ of X with coefficients in M are defined by (2.5 and 4.6)

$$H_i(X; M) = \operatorname{Tor}_i^{EF,X}(M, Z), \qquad i \geq 0,$$

where the simplicial ring EF.X acts on M through the canonical map $EF.X \rightarrow EX$.

In view of 4.8 this definition implies

5.2. **Proposition.** There is a natural first quadrant spectral sequence with

$$E_{p,q}^2 = (\operatorname{Tor}_p^{\pi_* EF_* X}(M, Z))_q \Rightarrow H_{p+q}(X; M).$$

5.3. Corollary. If X is E-flat (3.8), then there are natural isomorphisms

$$\operatorname{Tor}_{i}^{EX}(M, Z) \approx H_{i}(X; M), \quad i \geq 0.$$

Thus (3.8) for aspherical and for simply connected rational Π -algebras, the above definition of homology reduces to the usual one [5] for groups and for connected graded rational Lie algebras respectively.

Another immediate consequence of Definition 5.1 is (4.7):

5.4. **Proposition.** Let $* \to M' \to M \to M'' \to *$ be a short exact sequence of right EX-modules. Then there is a natural long exact sequence

$$\cdots \to H_i(X; M') \to H_i(X; M) \to H_i(X; M'')$$
$$\to H_{i-1}(X; M') \to \cdots \to H_0(X; M'') \to 0.$$

Less trivial is the existence of

- 5.5. A Serre spectral sequence. Let $* \to U \to W \to V \to *$ be a short exact sequence of Π -algebras. Then there are, for every right EW-module M,
 - (i) a natural right EV-action on each $H_i(U; M)$ $(i \ge 0)$, and

(ii) a natural first quadrant spectral sequence with

$$E_{p,q}^2 = H_p(V; H_q(U; M)) \Rightarrow H_{p+q}(W; M).$$

Proof. Let F'_*U be the kernel of the induced map $F_*W \to F_*V \in \mathbf{sII}$ -al of standard resolutions (2.5). The arguments of 2.3 then readily imply that F'_*U is a free simplicial Π -algebra. It follows (2.4) that the inclusion $F_*U \to F'_*U \in \mathbf{sII}$ -al is a homotopy equivalence and therefore [4] induces an isomorphism $\pi_*EF_*U \approx \pi_*EF'_*U$. The desired result now follows readily from 3.4, 3.7, 4.8, and

- 5.6. **Lemma.** Let $R \to S \to T$ be a sequence of simplicial rings (1.3) such that
 - (a) T is a free simplicial Z-module,
 - (b) S is free as a right simplicial R-module, and
 - (c) the composition $R \to T$ factors through the augmentation $R \to Z$ and the induced map $S \otimes_R Z \to T$ is an isomorphism of left simplicial S-modules.

Then there are, for every right simplicial S-module M,

- (i) a natural right action of $\pi_0 T$ (and hence T) on each $\operatorname{Tor}_i^R(M, Z)$ $(i \ge 0)$,
- (ii) a natural first quadrant spectral sequence with

$$E_{p,q}^2 = \operatorname{Tor}_p^T(\operatorname{Tor}_q^R(M, Z), Z) \Rightarrow \operatorname{Tor}_{p+q}^S(M, Z).$$

Proof. In view of (a) the canonical map (4.3) $(S \otimes_Z T^{\text{op}})_\# T \to T$ is a cofibrant resolution of T over S and hence (4.8) the induced map $(S \otimes_Z T^{\text{op}})_\# T \otimes_T T_\# Z \to Z$ is a cofibrant resolution of Z over S, so that, for all $i \geq 0$, $\pi_i(M \otimes_S (S \otimes_Z T^{\text{op}})_\# T \otimes_T T_\# Z) \approx \operatorname{Tor}_i^S(M, Z)$. Furthermore (b), (c), and §4.3 imply that the composition

$$S \otimes_R R_\# Z = R_\# Z \otimes_{R^{op}} S \to Z \otimes_{R^{op}} S = S \otimes_R Z \approx T$$

is also a cofibrant resolution of T over S. It follows (4.2) that there are canonical isomorphisms

$$\operatorname{Tor}_{i}^{R}(M, Z) = \pi_{i}(M \otimes_{R} R_{\#}Z) \approx \pi_{i}(M \otimes_{S} S \otimes_{R} R_{\#}Z)$$
$$\approx \pi_{i}(M \otimes_{S} (S \otimes_{Z} T^{\operatorname{op}})_{\#}T)$$

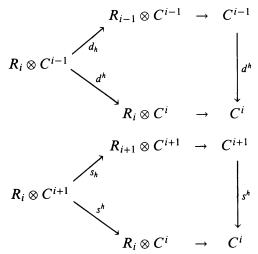
 $(i \ge 0)$, which yield a natural right $\pi_0 T$ -action on each $\operatorname{Tor}_i^R(M, Z)$ and the lemma now becomes an immediate consequence of §4.9.

6. The functors Ext_R^i for a simplicial ring R

In preparation for the definition (in $\S 7$) of the cohomology of a Π -algebra, we now "dualize" the results of $\S 4$. We start with defining

6.1. Cosimplicial modules over a simplicial ring. Given a simplicial ring R (1.3), a left cosimplicial R-module will consist of a cosimplicial abelian group C [1, Chapter X], together with a map of cosimplicial abelian groups $C \to \text{hom}(R, C)$ (where hom(R, C) denotes the cosimplicial abelian group with $\text{hom}(R, C)^i = \text{hom}(R_i, C^i)$ for all $i \ge 0$ and with the obvious cosimplicial operators) which turns each C^i ($i \ge 0$) into a left R_i -module. This is equivalent to requiring that each C^i ($i \ge 0$) comes with a left R-module structure

such that, for every pair of integers (h, i) with $0 \le h \le i$, the following diagrams are commutative:



The category of these left cosimplicial R-module will be denoted by \mathbf{M}^R .

- 6.2. The functor \hom_R for a simplicial ring R. Given (4.1 and 6.1) modules $B \in \mathbf{M}_R$ and $C \in \mathbf{M}^R$, the cosimplicial abelian group $\hom_R(B,C)$ (with $\hom_R(B,C)^i = \hom_{R_i}(B_i,C^i)$ for all $i \geq 0$ and with the obvious cosimplicial operators) has homotopy meaning when B is cofibrant (4.2), as a diagonal argument using [4] readily yields
- 6.3. **Proposition.** Let $C \in \mathbf{M}^R$ and let $f: B \to B' \to \mathbf{M}_R$ be a weak equivalence between cofibrant objects (4.2). Then the map $\hom_R(f, C) : \hom_R(B', C) \to \hom_R(B, C)$ induces an isomorphism of cohomotopy groups [1, Chapter X] $\pi^i \hom_R(B', C) \approx \pi^i \hom_R(B, C)$ $(i \ge 0)$.

Remark. It is useful to observe (see the remark after 4.5) that if $B \in \mathbf{M}_R$ is a cofibrant object and $f: C \to C' \in \mathbf{M}^R$ is a weak equivalence (i.e., a map inducing isomorphisms $\pi^*C \cong \pi^*C'$, $i \geq 0$), then the map

$$hom_R(B, f): hom_R(B, C) \rightarrow hom_R(B, C')$$

gives isomorphisms $\pi^i \hom_R(B\,,\,C) \simeq \pi^i \hom_R(B\,,\,C') \quad (i \geq 0)\,.$

6.4. The functors Ext_R^i for a simplicial ring R. Let $C \in \mathbf{M}^R$ and $B \in \mathbf{M}_R$ and let $j \colon B_\# \to B$ be a cofibrant resolution of B (4.3). Then the abelian groups $\pi^i \operatorname{hom}_R(B_\#,C)$ ($i \ge 0$) do not depend on the choice of the cofibrant resolution and will be denoted by $\operatorname{Ext}_R^i(B,C)$. Similarly, for maps $c \colon C' \to C \in \mathbf{M}^R$ and $b \colon B \to B' \in \mathbf{M}_R$, cofibrant resolutions $j \colon B_\# \to B$ and $j' \colon B_\#' \to B'$ and a map $b_\# \colon B_\# \to B_\#' \in \mathbf{M}_R$ such that $jb_\# = bj'$ (which always exists) the resulting maps

$$\pi^{i} \text{hom}_{R}(b_{\#}, c) \colon \pi^{i} \text{hom}_{R}(B'_{\#}, C')$$

$$= \text{Ext}_{R}^{i}(B', C') \to \pi^{i} \text{hom}_{R}(B_{\#}, C) = \text{Ext}_{R}^{i}(B, C)$$

 $(i \ge 0)$ do not depend on the choices of j, j', and $b_{\#}$ and will be denoted by $\operatorname{Ext}_R^i(b,c)$.

Clearly the functions Ext_R^i so defined are functors from $\mathbf{M}_R^{\operatorname{op}} \times \mathbf{M}^R$ to (abelian groups) and one readily verifies

6.5. **Proposition.** Let $* \to B' \to B \to B'' \to *$ and $* \to C' \to C \to C'' \to *$ be short exact sequences in \mathbf{M}_R and \mathbf{M}^R respectively. Then there are natural long exact sequences

$$0 \to \operatorname{Ext}_{R}^{0}(B'', C) \to \cdots \to \operatorname{Ext}_{R}^{i}(B, C) \to \operatorname{Ext}_{R}^{i}(B, C)$$

$$\to \operatorname{Ext}_{R}^{i}(B', C) \to \operatorname{Ext}_{R}^{i+1}(B'', C) \to,$$

$$0 \to \operatorname{Ext}_{R}^{0}(B, C') \to \cdots \to \operatorname{Ext}_{R}^{i}(B, C') \to \operatorname{Ext}_{R}^{i}(B, C)$$

$$\to \operatorname{Ext}_{R}^{i}(B, C'') \to \operatorname{Ext}_{R}^{i+1}(B, C') \to.$$

To get a hold on the groups $\operatorname{Ext}_R^i(B, C)$ we need

6.6. A natural action of π_*R on π^*C . Given a module $C \in \mathbf{M}^R$, a lengthy but essentially straightforward calculation yields that the maps $R_p \otimes C^n \to C^{n-p}$ $(0 \le p \le n)$ which send an element $x \otimes y \in R_p \otimes C^n$ to the element

$$\sum_{(\mu,\nu)} \varepsilon(\mu,\nu) s^{\mu}(s_{\nu}x) y \in C^{n-p}$$

(where (μ, ν) runs over all (p, n-p) shuffles, i.e., permutations $(\mu_1, \ldots, \mu_p, \nu_1, \ldots, \nu_{n-p})$ of $(0, \ldots, n-1)$ such that $\mu_1 < \cdots < \mu_p$ and $\nu_1 < \cdots < \nu_{n-p}$, where $\varepsilon(\mu, \nu)$ denotes the sign of the permutation and where $s^{\mu} = s^{\mu_1} \cdots s^{\mu_p}$ and $s_{\nu} = s_{\nu_{n-p}} \cdots s_{\nu_1}$, gives rise to a *left action of* $\pi_* R$ on the (≤ 0) -graded abelian group $\pi^* C$ (i.e., we put (degree $\pi^i C$) = -i). The resulting groups $\operatorname{Ext}^i_{\pi_* R}(\pi_* B, \pi^* C)$ are then related to the groups $\operatorname{Ext}^i_R(B, C)$ by

6.7. Künneth spectral sequence. There is a natural third quadrant spectral sequence with

$$E_2^{p,q} = (\operatorname{Ext}_{\pi_*R}^p(\pi_*B, \pi^*C))_{-q} \Rightarrow \operatorname{Ext}_R^{p+q}(B, C).$$

One also has

6.8. A partial Künneth spectral sequence. There is a natural third quadrant spectral sequence with

$$E_2^{p,q} = \operatorname{Ext}_R^p(B, \pi^q C) \Rightarrow \operatorname{Ext}_R^{p+q}(B, C)$$

where R acts on each $\pi^q C$ $(q \ge 0)$ through the projection $R \to \pi_0 R$.

It remains to give

6.9. **Proofs of 6.7 and 6.8.** The proofs of 6.7 and 6.8 are similar to those of 4.8 and 4.9 [7, II, §6].

To prove 6.7, construct (as in [7, II, §6] or [9, §2]) a "simplicial left simplicial R-module" V.B and a map $V.B \rightarrow B$ to the (discrete) simplicial left simplicial R-module B such that

- (i) each left simplicial R-module V_iB ($i \ge 0$) is a free left simplicial R-module such that π_*V_iB is a free left π_*R -module,
- (ii) the induced map diag $V.B \rightarrow B \in \mathbf{M}_R$ is a cofibrant resolution of B, and
- (iii) the induced map $\pi_*V.B \to \pi_*B$ is a cofibrant (and in fact free) simplicial resolution of π_*B over π_*R .

As $\hom_R(\operatorname{diag} V.B,C) \approx \operatorname{diag} \hom_R(V.B,C)$ and $\pi^* \hom_R(V_iB,C) \approx \hom_{\pi_*R}(\pi_*V_iB,\pi^*C)$ for all $i \geq 0$, the desired spectral sequence now is one of the spectral sequences of the bicosimplicial abelian group $\hom_R(V.B,C)$.

To prove 6.8 one constructs a Postnikov filtration on C, i.e., a filtration

$$0 = P_{-1}C \subset P_0C \subset \cdots \subset P_iC \subset \cdots \subset \bigcup_{n=1}^{\infty} P_nC = C$$

such that $\pi^i(P_iC/P_{i-1}C) = \pi^iC$ for all $i \ge 0$ and $\pi^j(P_iC/P_{i-1}C) = 0$ for $j \ne i$. This can be done, for instance, by constructing a corresponding filtration on the normalization NC of C [2, §3] and then denormalizing. The rest of the proof of 6.8 now is straightforward.

7. Cohomology of Π -algebras

"Dualizing" the results of §5 we

- (i) define, for a Π -algebra X and a left module N over the enveloping ring EX of X, cohomology groups $H^i(X; N)$ of X with coefficients in N, in such a manner that for aspherical Π -algebras (i.e., groups) and simply connected rational Π -algebras (which are essentially connected graded rational Lie algebras) this definition of cohomology coincides with the usual one, and
- (ii) note that a short exact sequence of coefficient modules, as usual, gives rise to a *long exact sequence* of cohomology groups, while a short exact sequence $* \to U \to W \to V \to *$ of Π -algebras yields a *Serre spectral sequence* relating the cohomology groups of U and V to those of W.

We thus start with defining the

7.1. Cohomology of Π -algebras. Let X be a Π -algebra (2.1), let EX be its enveloping ring (3.1) and let N be a left EX-module. Then the cohomology groups $H^i(X; N)$ of X with coefficients in N are defined by (2.5 and 6.4)

$$H^i(X; N) = \operatorname{Ext}_{E_{F,X}}^i(Z, N)$$

where the simplicial ring EF.X acts on N through the canonical map $EF.X \rightarrow EX$.

In view of 6.7 this definition implies

7.2. Proposition. There is a natural third quadrant spectral sequence with

$$E_2^{p\,,\,q} = (\operatorname{Ext}_{\pi_{\bullet}EF_{\bullet}X}^p(Z\,,\,N))_{-q} \Rightarrow H^{p+q}(X\,;\,N)\,.$$

7.3. Corollary. If X is E-flat (3.8), then there are natural isomorphisms

$$\operatorname{Ext}_{EX}^{i}(Z, N) \approx H^{i}(X; M), \quad i \geq 0.$$

Thus (3.8) for aspherical and for simply connected rational Π -algebras, the above definition of cohomology reduces to the usual ones [5] for groups and for connected graded rational Lie algebras respectively.

Another immediate consequence of Definition 7.1 is (6.5)

7.4. **Proposition.** Let $* \to N' \to N \to N'' \to *$ be a short exact sequence of left EX-modules. Then there is a natural long exact sequence

$$0 \to H^0(X; N') \to \cdots \to H^i(X; N') \to H^i(X; N)$$
$$\to H^i(X; N'') \to H^{i+1}(X; N') \to \cdots.$$

Less trivial is again the proof of the existence of

- 7.5. A Serre spectral sequence. Let $* \to U \to W \to V \to *$ be a short exact sequence of Π -algebras. Then there are, for every left EW-module N,
 - (i) a natural left EV-action on each $H^i(U; N)$ $(i \ge 0)$,
 - (ii) a natural third quadrant spectral sequence with

$$E_{2}^{p,q} = H^{p}(V; H^{q}(U; N)) \Rightarrow H^{p+q}(W; N).$$

Proof. This is essentially the same as the proof of 5.5, using (instead of 4.8 and 5.6) 6.7 and

- 7.6. **Lemma.** Let $R \to S \to T$ be a sequence of simplicial rings such that 5.6(a)-(c) hold. Then there are, for every left cosimplicial S-module N,
 - (i) a natural left action of $\pi_0 T$ (and hence T) on each $\operatorname{Ext}_R^i(Z, N)$ ($i \ge 0$),
 - (ii) a natural third quadrant spectral sequence with

$$E_2^{p,q} = \operatorname{Ext}_T^p(Z, \operatorname{Ext}_R^q(Z, N)) \Rightarrow \operatorname{Ext}_S^{p+q}(Z, N).$$

Proof. By the arguments of 5.6 one has

$$\pi^{p+q} \operatorname{hom}_{S}((S \otimes_{Z} T^{\operatorname{op}})_{\#} T \otimes_{T} T_{\#} Z, N) \cong \operatorname{Ext}_{S}^{p+q}(Z, N)$$

and

$$\pi^q \hom_S((S \otimes_Z T^{\mathrm{op}})_{\#} T, N) \cong \operatorname{Ext}_S^q(T, N)$$

$$\cong \pi^q \hom_S(S \otimes_S R_{\#} Z, N) \cong \operatorname{Ext}_R^q(Z, N).$$

The result follows from 6.8 with T in place of R, $T_\#Z$ in place of R, and $\hom_S((S\otimes_Z T^{\mathrm{op}})_\#T, N)$ in place of C.

8. Quillen homology and cohomology

We end with a Quillen-like approach to the homology and cohomology of Π -algebras and note that (except in the bottom dimension) the resulting groups differ from the ones of $\S 5$ and $\S 7$ by only a shift in dimension. To do all this we need the notion of

8.1. Strong abelianization over a Π -algebra. Given a Π -algebra X, let $(\Pi$ -al/X) denote its over category (which has as objects the maps $Y \to X \in \Pi$ -al and as maps the obvious commutative triangles) and let $(\Pi$ -al/X)_{sab} denote the category of the abelian group objects in $(\Pi$ -al/X) which have a strongly abelian (2.2) kernel. In other words, the objects of $(\Pi$ -al/X)_{sab} are the diagrams

$$* \to B \xrightarrow{i} Y' \xrightarrow{p}_{j} X \to *$$

in Π -al in which

- (i) B is strongly abelian,
- (ii) the right-pointing arrows form an exact sequence,
- (iii) $pj = id: X \rightarrow X$.

The strong abelianization functor

sab:
$$(\Pi-al/X) \rightarrow (\Pi-al/X)_{sab}$$

then is defined as the left adjoint of the forgetful functor $(\Pi-al/X)_{sab} \to (\Pi-al/X)$. To "compute", for an object $(Y \to X) \in (\Pi-al/X)$, the image $sab(Y \to X) \in (\Pi-al/X)_{sab}$, we need

8.2. **Proposition.** (i) Given an object of $(\Pi-al/X)_{sab}$, i.e., a diagram

$$* \to B \xrightarrow{i} Y' \xrightarrow{p} X \to *$$

in Π -al as in 8.1, let B^* denote the (≥ 0) -graded abelian group obtained from B by lowering the degrees by 1, and, for every element $b \in B$, let the same symbol b denote the corresponding element of B^* . Then there is a unique left EX-module structure on B^* such that, if we identify the elements $x \in X$ and $b \in B$ with their images in Y' under i and j respectively,

$$(ex)b = xbx^{-1}, x \in X_1, b \in \mathbf{B}_1,$$

$$= \tau_x b, x \in \mathbf{X}_1, b \in \widetilde{\mathbf{B}},$$

$$= x - \tau_b x, x \in \widetilde{\mathbf{X}}, b \in \mathbf{B}_1,$$

$$= [x, b], x \in \widetilde{X}, b \in \widetilde{\mathbf{B}}.$$

(ii) Moreover, the resulting functor

$$\Phi: (\Pi-al/X)_{sab} \to ((\geq 0)-graded \ left \ EX-modules)$$

is an equivalence of categories.

Now we can state

8.3. **Proposition.** Let $(Y \rightarrow X) \in (\Pi - al/x)$. Then

$$\Phi(\operatorname{sab}(Y \to X)) = EX \otimes_{EY} IY$$

where $IY \subset EY$ denotes the augmentation ideal. In particular

$$\Phi(\operatorname{sab}(\operatorname{id}:X\to X))=IX.$$

As the proofs of these two propositions are rather long, we will postpone them until §9, and proceed here with defining

8.4. The Quillen homology of a Π -algebra. Given a Π -algebra X and a right EX-module M, one can consider the composite functor $H^Q(-; M)$

$$(\Pi-al/X) \xrightarrow{sab} (\Pi-al/X)_{sab} \xrightarrow{\Phi} \mathbf{M}_{EX^{op}} \xrightarrow{M \otimes_{EX} -} (abelian groups)$$

which (8.3) send an object $(Y \to X) \in (\Pi-al/X)$ to the abelian group $M \otimes_{EX} EX \otimes_{EY} IY = M \otimes_{EY} IY$. The Quillen homology groups of X with coefficients in M then will be defined as the left derived functors of the functor $H^Q(-; M)$, applied to the identity map of X, i.e. (2.4, 2.5, and [8]),

$$H_i^Q(X; M) = \pi_i(M \otimes_{EF,X} IF.X)$$

or equivalently (3.6 and 4.6)

$$H_i^Q(X; M) = \operatorname{Tor}_i^{EF,X}(M, IF,X).$$

Moreover, combining this with 4.7, 5.1, and the short exact sequence $* \rightarrow IF.X \rightarrow EF.X \rightarrow Z \rightarrow *$ one gets

8.5. **Proposition.** There are natural isomorphisms

$$H_i^Q(X; M) \approx H_{i+1}(X; M), \qquad i > 0,$$

and a natural exact sequence

$$0 \to H_1(X; M) \to H_0^{\mathcal{Q}}(X; M) \to M \to H_0(X; M) \to 0.$$

"Dualizing" all this one obtains

8.6. The Quillen cohomology of a Π -algebra. Given a Π -algebra X and a left EX-module N, one can consider the composite functor $H_Q(-; N)$

$$(\Pi-al/X) \xrightarrow{sab} (\Pi-al/X)_{sab} \xrightarrow{\Phi} \mathbf{M}_{EX} \xrightarrow{hom_{EX}(-,N)} (abelian groups)$$

which (8.3) sends an object $(Y \to X) \in (\Pi - al/X)$ to the abelian group

$$hom_{EX}(EX \otimes_{EY} IY, N) = hom_{EY}(IY, N).$$

The Quillen cohomology groups of X with coefficients in N then will be defined as the left derived functors of the functor $H_Q(-; N)$, applied to the identity map of X, i.e. (2.4, 2.5, and [8]),

$$H_O^i(X; N) = \pi^i \text{hom}_{EF,X}(IF,X, N)$$

or equivalently (3.6 and 6.4)

$$H_O^i(X; N) = \operatorname{Ext}_{EF,X}^i(IF,X, N)$$
.

Moreover combining this with 6.5, 7.1, and the short exact sequence $* \rightarrow IF.X \rightarrow EF.X \rightarrow Z \rightarrow *$ one gets

8.7. **Proposition.** There are natural isomorphisms

$$H_O^i(X; N) \approx H^{i+1}(X; N), \qquad i > 0,$$

and a natural exact sequence

$$0 \to H^0(X\,;\,N) \to N \to H^0_O(X\,;\,N) \to H^1(X\,;\,N) \to 0\,.$$

It thus remains to give

9. Proofs of Propositions 8.2 and 8.3

We start with a

9.1. **Proof of 8.2(i).** As EX is generated by the ex $(x \in X)$, there is at most one such left EX-module structure on $B^{\#}$ and one thus has to show only that the formulas of 8.2 indeed determine such a structure. Most of this is straightforward. The only nontrivial part is to show that, for $b \in B_q$, $x \in X_p$, and $\alpha \in \pi_r S^p$ (r > p > 1)

$$e(x \circ \alpha)b = H(\alpha)(ex)^2b$$
, p even and $r = 2p - 1$,
= 0, otherwise.

If q>1, one notes [3, 1.3] that, unless p is even and r=2p-1, the element (2.3) $[\alpha\,,\,i_q]\in\pi_{q+r-1}(S^p\vee S^q)$ has finite order and hence [3, 3.4] is a finite sum of $(i_p\,,\,i_q)$ -decomposable (i.e., elements which are Whitehead products in i_p and i_q , followed by a composition). Naturality then yields that $e(x\circ\alpha)b=0$.

If p is even and r = 2p - 1, then similarly $[\alpha, i_q] = H(\alpha)[i_p, [i_p, i_q]]$ modulo (i_p, i_q) -decomposable, which implies that $e(x \circ \alpha)b = H(\alpha)(ex)^2b$.

If q=1, one considers the element $(\alpha - \tau \alpha) \in \pi_r(S^p \vee S^1)$, where $\tau = \tau_{i_1}$. Again, unless p is even and r = 2p - 1, this element has finite order and hence is a finite sum of $(i_p, \tau i_p)$ -decomposables, which implies that $e(x \circ \alpha)b = 0$. If p is even and r = 2p - 1, then [10, Chapter XI]

$$(\alpha-\tau\alpha)+H(\alpha)[i_p-\tau i_p\,,\,i_p-\tau i_p]=(i_p-\tau i_p)\circ\alpha+H(\alpha)[i_p\,,\,i_p-\tau i_p]$$

and from this one readily deduces that $e(x \circ \alpha)b = H(\alpha)(ex)^2b$.

9.2. **Proof of 8.2(ii).** The main problem here is to construct a potential inverse for the functor Φ . To do this we recall from [3, §2] that a Π -algebra can be considered as a contravariant functor from the category of finitely generated free **II**-algebras to the category of pointed sets, which sends coproducts to products. Given a (> 0)-graded left EX-module A, we then consider the contravariant functor which sends a finitely generated free Π -algebra V to the (pointed) set of pairs (f, g), where f is a map $f: V \to X \in \Pi$ -al and g is a map of left EV-modules $g: IV \to (Ef)^*A$. In view of 3.6 this functor sends coproducts to products and hence determines a Π -algebra, say Y', and one readily verifies that there are obvious maps $p: Y' \to X$ and $j: X \to Y' \in \Pi$ -al such that $pj = \emptyset$ id and such that the kernel of p is the strongly abelian Π -algebra, obtained from A by raising the degrees by 1. It remains to show that the resulting functor to $(\Pi-al/X)_{sab}$ is actually a two-sided inverse of Φ , but that is straightforward.

We end, as promised, with a

9.3. **Proof of 8.3.** Let

$$* \to B \xrightarrow{i} Y' \stackrel{p}{\underset{i}{\rightleftharpoons}} X \to *$$

and $B^{\#}$ be as in 8.2. Given an object $f: Y \to X \in (\Pi - al/X)$ and a map $k: EX \otimes_{EY} IY \to B^{\#}$ of left EX-modules, let $tk: Y \to Y'$ be the function defined (in the notation of 8.2) by

$$(tk)y = k(1 \otimes (ey - 1))fy, y \in \mathbf{Y}_1,$$

= $k(1 \otimes ey) + fy, y \in \widetilde{Y}.$

Then a straightforward calculation using [10, XI, 8.5] shows that tk is actually a map in Π -al such that p(tk) = f. Moreover the function t so defined is, in view of 3.6, a natural 1-1 correspondence between the left EX-module maps $EX \otimes_{EY} IY \to B^{\#}$ and the maps $f \to p \in (\Pi - al/X)$, whenever Y is a free II-algebra, and a direct limit argument readily implies that this restriction on Y is superfluous. Thus the functor which send an object $f: Y \to X \in (\Pi - al/X)$ to the left EX-module $EX \otimes_{EY} IY$ is left adjoint to the composition of Φ^{-1} and the forgetful functor $(\Pi-al/X)_{sab} \to (\Pi-al/X)$ and hence canonically naturally equivalent to the functor $\Phi(sab)$.

REFERENCES

- 1. A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localization, Lecture Notes in Math., vol. 304, Springer-Verlag, Berlin and New York, 1972.
- 2. W. G. Dwyer and D. M. Kan, Normalizing the cyclic modules of Connes, Comment. Math. Helv. 60 (1985), 582-600.

- 3. _____, The enveloping ring of a Π-algebra, Advances in Homotopy Theory, London Math. Soc. Lecture Note Ser., vol. 139, Cambridge Univ. Press, Cambridge, 1989, pp. 49-60.
- 4. D. M. Kan, On the homotopy relation for c.s.s. maps, Bul. Soc. Mat. Mexicana 2 (1957), 75-81.
- 5. S. Mac Lane, Homology, Springer, New York, 1963.
- 6. J. W. Milnor, On the construction FK, London Math. Soc. Lecture Note Ser., vol. 4, Cambridge Univ. Press, Cambridge, 1972, pp. 119-136.
- 7. D. G. Quillen, *Homotopical algebra*, Lecture Notes in Math., vol. 43, Springer-Verlag, Berlin and New York, 1967.
- 8. _____, On the (co-) homology of commutative rings, Proc. Sympos. Pure Math., vol. 17, Amer. Math. Soc., Providence, RI, 1970, pp. 65-87.
- 9. C. R. Stover, A van Kampen spectral sequence for higher homotopy groups, Topology (to appear).
- G. W. Whitehead, Elements of homotopy theory, Graduate Texts in Math., vol. 61, Springer-Verlag, Berlin and New York, 1978.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NOTRE DAME, NOTRE DAME, INDIANA 46556 E-mail address: dwyer.1@nd.edu

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139